Li_2MoF_6

ERMER, O. & DUNITZ, J. D. (1970). Acta Cryst. A26, 163.

FOURQUET, J. L., LESAMEDI, E. & CALAGE, Y. (1988). J. Solid State Chem. 77, 84-89.

GOLDSCHMIDT, V. M. (1926). Skrift. Nor. Vidensk. Akad. Oslo 1, pp. 17-19.

KASSNER, D., BAUR, W. H., JOSWIG, W., EICHHORN, K., WENDSCHUH-JOSTIES, M. & KUPČIK, V. (1993). *Acta Cryst.* B49, 646–654.

Magnéli, A. & Andersson, G. (1955). Acta Chem. Scand. 9, 1378–1381.

MÜLLER, U. (1993). Inorganic Structural Chemistry. Chichester: Wiley.

OLTHOF-HAZEKAMP, R. (1990). CRYLSQ. In Xtal3.0 Reference Manual, edited by S. R. HALL & J. M STEWART. Univs. of Western Australia, Australia, and Maryland, USA.

Schomaker, V. & Marsh, R. E. (1979). Acta Cryst. B35, 1933-1934.

VEGARD, L. (1916). Philos. Mag. 32, 65-96.

VIEBAHN, W. & EPPLE, P. (1976). Z. Anorg. Allg. Chem. 427,

WILSON, A. J. C. (1950). Acta Cryst. 3, 397-398.

Acta Cryst. (1994). B50, 146-150

Structures of (Ferrocenylmethyl)trimethylammonium Iodide and Hexa-N-methylferrocene-1.1'-divlbis(methylammonium Iodide)

By George Ferguson and John F. Gallagher*

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

AND CHRISTOPHER GLIDEWELL AND CHOUDHURY M. ZAKARIA School of Chemistry, The University, St Andrews, Fife KY16 9ST, Scotland

(Received 29 June 1993; accepted 7 October 1993)

Abstract

(Ferrocenylmethyl)trimethylammonium iodide (1), [C₁₄- H_{20} FeN][I], $M_r = 385.07$, monoclinic, $P2_1/c$, a =8.6236(5), b = 13.5926(10), c = 12.8623(6) Å, $\beta =$ $102.792(4)^{\circ}$, $V = 1470.3(2) \text{ Å}^3$, Z = 4, T = 293 K, F(000) = 760, $D_x = 1.74$ g cm⁻³, Mo $K\alpha$, $\lambda = 0.71069$ Å, $\mu = 3.08 \, \text{mm}^{-1}, R = 0.024 \text{ for } 4075 \text{ observations}$ $[I > 3\sigma(I)]$. The $[\{(C_5H_5)Fe(C_5H_4)\}-CH_2N(CH_3)_3]^+$ cation is involved in a three-dimensional network of C-H···I⁻ interactions (both the cation and anion residing in general positions). The shortest C···I distances are 3.954 (2), 3.992 (2) and 4.009 (3) Å. Hexa-Nmethylferrocene-1,1'-diylbis(methylammonium iodide) (2), $[C_{18}H_{30}FeN_2].2[I]$, $M_r = 584.10$, monoclinic, C2/c, a = 27.1457(12), b = 12.3446(6), c =14.5295 (10) Å, $\beta = 115.909 (4)^{\circ}$, $V = 4379.5 (4) Å^3$, Z = 8, T = 293 K, F(000) = 2264, $D_x = 1.772$ g cm⁻³, Mo $K\alpha$, $\lambda = 0.71069 \,\text{Å}$, $\mu = 3.48 \,\text{mm}^{-1}$, R =0.031 for 4482 observations $[I > 3\sigma(I)]$. In (2), the $[Fe{(C₅H₄)CH₂-N(CH₃)₃}₂]²⁺$ cation (which has approximate twofold symmetry) and one of the anions reside in general positions. Another iodide resides on a twofold axis, while a third iodide lies on an inversion centre. A more extensive three-dimensional network of C—H···I⁻ interactions is present in (2) than in (1) and involves all three of the iodide anions. The shortest $C\cdots I^-$ contacts are 3.733 (4) and 3.848 (4) Å and involve the iodide which resides in a general position (all three iodides have $C\cdots I$ contacts < 4.1 Å).

Introduction

The current interest in structural ferrocene chemistry focuses on a wide variety of derivatives which may have potential applications in (a) charge-transfer chemistry (Moore et al., 1993) (b) supramolecular chemistry (Beer et al., 1991), (c) non-linear optical materials science (Houlton et al., 1993), (d) ceramics (Tang et al. 1993) and (e) molecular inclusion and recognition chemistry (Ferguson, Gallagher, Glidewell & Zakaria, 1993a,b).

Hydrogen bonds often provide the strongest intermolecular forces between molecules in organic molecular crystals and hence often dictate the preferred packing arrangement. The general principles underlying hydrogen-bond formation are reasonably well understood and the structures of hydrogen-bonded crystals can often be rationalized in terms of preferred combinations of hydrogen-bond donors and acceptors (Etter, 1990; Etter, McDonald & Bernstein, 1990; Etter & Reutzel, 1991).

We are currently studying the molecular structures, hydrogen-bonding and molecular-interaction patterns in the crystal lattices of a variety of ferrocene

^{*}Present address: University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, England.

derivatives of the type Fe[(C₅H₅)(C₅H₄)]CR'R''OH or Fe[(C₅H₄)CR'R''OH]₂, by changing the substituents at the central C atom. We have noted that the extent and nature of the hydrogen bonding is clearly not a simple function solely of the steric demands about the central C atom (Ferguson, Gallagher, Glidewell & Zakaria, 1993a). It is anticipated that with the appropriate molecular design within this electroactive ferrocene series, these complexes will have potential application as non-linear optical materials and in molecular inclusion and recognition chemistry.

The salt (ferrocenylmethyl)trimethylammonium iodide, $[(C_5H_5)FeC_5H_4CH_2N(CH_3)_3][I]$ (1), is a valuable synthetic intermediate in ferrocene chemistry as its cation reacts rapidly and efficiently with a wide range of nucleophilic reagents, with displacement of trimethylamine. By contrast, the corresponding 1,1'disubstituted derivative hexa-N-methylferrocene-1,1'diylbis(methylammonium iodide), [Fe{C₅H₄-CH₂N- $(CH_3)_3$ {2].2[I] (2), reacts more slowly by several orders of magnitude in similar reactions, despite the dipositive charge on the cation. Therefore, we have determined the structures of (1) and (2) in order to assess whether there are any structural or conformational features contributing to the deceleration of substitution reactions in (2). The structure of (1) is also of interest as this compound was the first organometallic structure to be solved ab initio from X-ray powder data collected using a conventional laboratory powder diffractometer (Lightfoot, Glidewell & Bruce, 1992), before single crystals were available. The highly accurate structure refinement using singlecrystal data reported here for (1) allows comparison with the previous Rietveld refinement, which required the application of soft constraints to most of the interatomic distances in the cation for successful refinement.

Experimental

Synthesis

Samples of compounds (1) and (2) were prepared from ferrocene by aminomethylation and subsequent methylation (Pauson, Sandhu & Watts, 1966). Single crystals were grown by slow evaporation of solutions in dichloromethane (for 1) or nitromethane (for 2).

Data collection and cell refinement

Enraf-Nonius CAD-4 software was used. The data reduction program used to solve and refine the structure and the software used to prepare the material for publication was NRCVAX (Gabe, Le Page, Charland, Lee & White, 1989). Details of cell data, data collection and refinement are concisely summarized in Table 1. The space group for (1) was determined unambiguously from the systematic absences (h0l absent if l = 2n + 1, 0k0absent if k = 2n + 1) as $P2_1/c$. The systematic absences for (2) (hkl absent if h + k = 2n + 1, h0l absent if l = 12n + 1) allow the space group to be either C2/c or Cc; the former was assumed and confirmed by the analysis. In both structures, the H atoms attached to the C atoms were clearly visible in difference maps at intermediate stages of refinement. All H atoms were positioned on geometric grounds with only their thermal parameters refined isotropically (C-H 0.95 Å) and included as riding atoms in the structure-factor calculations. There is no solvent of crystallization present in either of the lattices and an examination of the crystal structures using PLATON (Spek, 1993a) revealed no potential volume for any solvent molecules. The diagrams were prepared using ORTEPII (Johnson, 1976) and PLUTON (Spek, 1993b). Final fractional coordinates* are given in Table 2 and principal dimensions in Table 3.

Results and discussion

The salt (1) crystallizes in the centrosymmetric space group $P2_1/c$ with the cation and iodide anion both residing in general positions in the asymmetric unit, Fig. 1. The cation has approximate mirror symmetry and the Fe-C bond lengths are in the range 2.040 (2)-2.051 (2) Å [mean 2.043 (2) Å] for the unsubstituted cyclopentadienyl ring (C11-C15) and 2.025 (2)-2.050 (2) Å [mean 2.038 (2) Å] for the substituted ring (C21-C25). The Fe···Cp plane distance is 1.650(1) Å for the unsubstituted cyclopentadienyl ring and 1.638 (1) Å for the substituted cyclopentadienyl ring. These Fe···Cp values are 1.652 (1) Å [1.640 (1) Å] and 1.652(1) Å [1.645(1) Å] in the related ferrocenyl(phenyl)methanol molecule (Ferguson, Gallagher, Glidewell & Zakaria, 1993c). This seems to indicate that there is a general trend in these unsymmetrical ferrocene derivatives for the mean Fe...Cp distance to be longer in the unsubstituted cyclopentadienyl ring system than the substituted cyclopentadienyl ring. The dihedral angle between the C₅ planes is 2.7(1)° and they are within 4.6(1)° of an eclipsed conformation.

^{*} Lists of anisotropic thermal parameters, hydrogen positions, full details of molecular dimensions and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71557 (51 pp). Copies may be obtained through the Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: LI1071]

Table 1. Summary of crystal data, data collection, solu-

tion and refinement details Crystal data $[C_{14}H_{20}FeN][I]$ $[C_{18}H_{30}FeN_2].2[I]$ Chemical formula 584.10 385.07 Molecular weight Monoclinic Monoclinic Crystal system $P2_1/c$ C2/c Space group 27.1457 (12) 8.6236 (5) a (Å) 13.5926 (10) 12.3446 (6) b (Å) 12.8623 (6) 14.5295 (10) c (Å) 115,909 (4) β (°) V (Å³) 102.792 (4) 4379.5 (4) 1470.26 (15) Approximately twofold Cation symmetry None 760 F(000)1.772 D_x (Mg m⁻³) 1.740 No. of reflections for 25 25 cell parameters 39-46 30-54 2θ range for cell parameters (°) 3.08 3.48 $\mu \text{ (mm}^{-1})$ 294 294 Temperature (K) Block Block Crystal form $0.35 \times 0.45 \times 0.75$ $0.35 \times 0.35 \times 0.45$ Crystal size (mm) Orange Orange Crystal colour Data collection Enraf-Nonius CAD-4 Enraf-Nonius CAD-4 Diffractometer 9 1/2 scans 9 1/2 scans Absorption correction 0.3801 T_{\min} 0.3666 0.4629 0.5070 T_{max} No. of measured 5360 7840 reflections 7589 No. of independent 5081 reflections 0.025 0.009 R_{int} 4482 4075 No. of observed reflections $I > 3\sigma(I)$ Observation criterion $I > 3\sigma(I)$ 64 64 $2\theta_{\rm max}$ (°) 0 - 12 $0 \rightarrow 40$ Range of h, k, l 0 - 20 0 → 18 $-19 \rightarrow 19$ $-21 \rightarrow 21$ 3 every 40 min 3 every 60 min No. of standard reflections 2.5 2.0 Intensity variation (%) Refinement Structure solution Patterson heavy atom Patterson heavy atom 0.024 0.031 0.035 0.043 wR 1.47 1.70 No. of parameters 175 241 used 4075 4482 No. of reflections used Riding H atoms Riding H atoms H-atom treatment $w = 1/(\sigma^2 F_o + kF_o^2)$ $w = 1/(\sigma^2 F_o + kF_o^2)$ Weighting 0.0003 0.0003 0.011 0.000 $(\Delta/\sigma)_{\rm max}$ $\Delta \rho$ range (e Å⁻³) -0.78, 0.85 -1.20, 1.17 Larson (1970) Larson (1970) Extinction correction 1.146 (046) 0.896 (050) Extinction coefficient International Tables for International Tables for Source of atomic X-ray Crystallography X-ray Crystallography scattering factors (1974, Vol. IV) (1974, Vol. IV) Computer programs Silicon Graphics Silicon Graphics System used for all 4D-35TG 4D-35TG calculations CAD-4 software CAD-4 software Data collection CAD-4 software Cell refinement CAD-4 software NRCVAX DATRD2 NRCVAX DATRD2 Data reduction NRCVAX Patterson map NRCVAX Patterson map

NRCVAX LSTSO

PLUTON

NRCVAX, ORTÈPII,

NRCVAX LSTSQ

PLUTON

NRCVAX. ORTEPII.

Structure solution

Structure refinement

Molecular graphics

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

	ison opic ais		a. ae.e.e.e. (1 -	,			
$U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$							
	x	у	z	$U_{ m eq}$			
Compound (1)							
I	-0.321554 (20)	0.055175 (12)	0.195671 (12)	0.05155 (8)			
Fe	0.16924(3)	0.175241 (18)	0.463348 (20)	0.02958 (11)			
N	-0.26054(19)	0.35787 (11)	0.34666 (13)	0.0343 (7)			
C1	-0.11822(23)	0.29304 (14)	0.34264 (15)	0.0354 (8)			
C2	-0.3529(3)	0.37102 (19)	0.23459 (19)	0.0502 (11)			
C3	-0.3634(3)	0.30998 (19)	0.41096 (21)	0.0498 (12)			
C4	-0.2094(3)	0.45660 (15)	0.39399 (20)	0.0475 (11)			
CII	0.1124 (3)	0.03809 (14)	0.40165 (18)	0.0400 (9)			
C12	0.2545 (3)	0.03485 (16)	0.48243 (17)	0.0438 (10)			
C13	0.3676 (2)	0.09744 (18)	0.45076 (17)	0.0436 (10)			
C14	0.2958 (2)	0.14000 (16)	0.35104 (16)	0.0403 (9)			
C15	0.1385 (2)	0.10364 (15)	0.32042 (15)	0.0366 (8)			
C21	-0.0122(3)	0.21447 (14)	0.53124 (16)	0.0387 (8)			
C22	0.1338 (3)	0.21896 (18)	0.60810 (16)	0.0481 (11)			
C23	0.2351 (3)	0.28660 (17)	0.57166 (18)	0.0483 (10)			
C24	0.1529 (3)	0.32512 (14)	0.47233 (17)	0.0396 (9) 0.0321 (7)			
C25	-0.0013 (2)	0.28038 (12)	0.44577 (14)	0.0321 (7)			
Compound (2)							
I 1	0.07826(1)	0.56034(2)	0.17568 (2)	0.0607(2)			
12	0.00000	0.93826(3)	-0.25000	0.0533(2)			
13	0.25000	1.25000	0.00000	0.1219 (5)			
Fe	0.181826 (17)	0.94386(3)	0.14909(3)	0.0370(2)			
C11	0.20549 (14)	0.7859 (3)	0.1646 (3)	0.053(2)			
C12	0.25172 (15)	0.8545 (4)	0.1972 (4)	0.068 (3)			
C13	0.24575 (16)	0.9218 (3)	0.1145 (4)	0.065 (3)			
C14	0.19612 (15)	0.8954 (3)	0.0300(3)	0.050(2)			
C15	0.17039 (12)	0.8113 (3)	0.0607 (2)	0.040 (2)			
C1 <i>A</i>	0.11457 (13)	0.7637 (3)	-0.0006(2)	0.041 (2)			
N1 <i>A</i>	0.11271 (11)	0.6719 (2)	-0.0721 (2)	0.043 (2)			
C2A	0.12590 (17)	0.7132 (3)	-0.1553 (3)	0.056 (3)			
C3A	0.15250 (16)	0.5842 (3)	-0.0152 (3)	0.053 (2)			
C4A	0.05591 (15)	0.6275 (3)	-0.1173 (3)	0.056 (2)			
C21	0.18389 (14)	1.1028 (3)	0.1872 (3)	0.053 (2)			
C22	0.18887 (20)	1.0368 (4)	0.2698 (3)	0.071 (3)			
C23	0.14304 (21)	0.9714 (4)	0.2392 (3)	0.072 (3)			
C24	0.10792 (14)	0.9945 (3)	0.1354 (3)	0.051 (2)			
C25	0.13324 (12)	1.0758 (2)	0.1023 (2)	0.037 (2)			
C1 <i>B</i>	0.11473 (11)	1.1195 (2)	-0.0027 (2)	0.038 (2)			
N1B	0.07657 (11)	1.2170 (2)	-0.0267 (2)	0.044 (2)			
C2B	0.02361 (17)	1.1845 (4)	-0.0284 (4) 0.0483 (4)	0.071 (3) 0.079 (4)			
C3B	0.10259 (24)	1.3058 (3)	-0.1309 (3)	0.063 (3)			
C4B	0.06593 (17)	1.2566 (4)	-0.1309 (3)	0.003(3)			

The Csp^3 C1 atom is displaced 0.140(4) Å from the plane of the substituted C₅ ring towards the Fe atom. There is no evidence for disorder in the unsubstituted cyclopentadienyl ring (C11—C15) from an analysis of the anisotropic thermal parameters. The Csp^3 —N and C_{cp} — Csp^3 bond lengths involving C1 are 1.521 (2) and 1.488 (3) Å, respectively. The ranges of C_{cp}—C_{cp} bond lengths are 1.417(3)-1.428(3) Å [mean 1.421(3) Å] and 1.417 (3)-1.437 (3) Å [mean 1.425 (3) Å] for the unsubstituted and substituted cyclopentadienyl rings, respectively.

In the structure of (2), the cation resides in a general position in the space group C2/c, one iodide anion resides in a general position, another iodide resides on a twofold axis and a third iodide anion lies on an inversion centre, Fig. 2. The cation has approximate twofold symmetry with both of the substituted cyclopentadienyl systems adopting similar conformations, as evidenced by

Table 3. Bond lengths and contact distances (Å)

$ \begin{array}{c} Fe-C11 & 2.043 \ (2) & N-C4 & 1.499 \ (3) \\ Fe-C12 & 2.040 \ (2) & C1-C25 & 1.488 \ (3) \\ Fe-C13 & 2.048 \ (2) & C11-C12 & 1.421 \ (3) \\ Fe-C14 & 2.051 \ (2) & C11-C15 & 1.428 \ (3) \\ Fe-C15 & 2.045 \ (2) & C12-C13 & 1.421 \ (3) \\ Fe-C21 & 2.025 \ (2) & C13-C14 & 1.418 \ (3) \\ Fe-C22 & 2.041 \ (2) & C14-C15 & 1.415 \ (3) \\ Fe-C23 & 2.050 \ (2) & C21-C22 & 1.420 \ (3) \\ Fe-C24 & 2.047 \ (2) & C21-C22 & 1.420 \ (3) \\ Fe-C25 & 2.027 \ (2) & C22-C23 & 1.417 \ (4) \\ N-C1 & 1.521 \ (2) & C23-C24 & 1.417 \ (3) \\ N-C2 & 1.495 \ (3) & C24-C25 & 1.433 \ (3) \\ N-C3 & 1.490 \ (3) \\ I-C1 & 3.954 \ (2) & I-C4^{ij} & 4.173 \ (3) \\ I-C1 & 3.954 \ (2) & I-C4^{ij} & 4.232 \ (2) \\ I-C3^{ii} & 4.039 \ (3) & I-C12^{iii} & 4.232 \ (2) \\ I-C3^{ii} & 4.039 \ (3) & I-C12^{iii} & 4.232 \ (2) \\ I-C3^{ii} & 4.039 \ (3) & I-C24^{iv} & 4.237 \ (2) \\ \hline Compound \ (2) \\ Fe-C11 & 2.034 \ (3) & C15-C1A & 1.502 \ (4) \\ Fe-C12 & 2.036 \ (4) & C1A-N1A & 1.524 \ (4) \\ Fe-C13 & 2.025 \ (4) & N1A-C2A & 1.493 \ (4) \\ Fe-C14 & 2.022 \ (3) & N1A-C3A & 1.496 \ (4) \\ Fe-C15 & 2.019 \ (3) & N1A-C3A & 1.496 \ (4) \\ Fe-C21 & 2.034 \ (4) & C21-C22 & 1.408 \ (6) \\ Fe-C22 & 2.034 \ (4) & C21-C22 & 1.408 \ (6) \\ Fe-C23 & 2.036 \ (4) & C22-C23 & 1.384 \ (8) \\ Fe-C24 & 2.027 \ (3) & C3-C24 & 1.417 \ (6) \\ Fe-C25 & 2.018 \ (3) & C24-C25 & 1.429 \ (4) \\ Fe-C26 & 2.027 \ (3) & C3-C24 & 1.417 \ (6) \\ Fe-C27 & 2.036 \ (4) & C21-C22 & 1.498 \ (4) \\ Fe-C28 & 2.036 \ (4) & C22-C23 & 1.384 \ (8) \\ Fe-C29 & 2.036 \ (4) & C22-C23 & 1.384 \ (8) \ (21-C15) & 1.424 \ (5) \\ C13-C14 & 1.408 \ (6) & N1B-C3B & 1.482 \ (5) \\ C13-C14 & 1.408 \ (6) & N1B-C3B & 1.482 \ (5) \\ C13-C14 & 1.408 \ (6) & N1B-C2B & 1.482 \ (5) \\ C13-C14 & 1.408 \ (6) & N1B-C2B & 1.492 \ (3) \\ 11-C3P^{ii} & 3.033 \ (4) & 12-C2P^{ii} & 4.038 \ (3) \ (11-C3P^{ii} & 4.038 \ (3)$	Compound (1)							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Fe—C11	2.043 (2)	N—C4	1.499 (3)				
$ \begin{array}{c} \text{Fe-C14} & 2.051 \ (2) & \text{C11-C15} & 1.428 \ (3) \\ \text{Fe-C21} & 2.045 \ (2) & \text{C12-C13} & 1.421 \ (3) \\ \text{Fe-C22} & 2.025 \ (2) & \text{C13-C14} & 1.418 \ (3) \\ \text{Fe-C22} & 2.041 \ (2) & \text{C14-C15} & 1.415 \ (3) \\ \text{Fe-C23} & 2.050 \ (2) & \text{C21-C22} & 1.420 \ (3) \\ \text{Fe-C24} & 2.047 \ (2) & \text{C21-C25} & 1.437 \ (3) \\ \text{Fe-C25} & 2.027 \ (2) & \text{C22-C23} & 1.417 \ (4) \\ \text{N-C1} & 1.521 \ (2) & \text{C23-C24} & 1.417 \ (3) \\ \text{N-C2} & 1.495 \ (3) & \text{C24-C25} & 1.433 \ (3) \\ \text{N-C3} & 1.490 \ (3) \\ \text{I-C1} & 3.954 \ (2) & \text{I-C4}^{\text{I}} & 4.173 \ (3) \\ \text{I-C15} & 3.992 \ (2) & \text{I-C4}^{\text{II}} & 4.205 \ (3) \\ \text{I-C2}^{\text{II}} & 4.099 \ (3) & \text{I-C12}^{\text{III}} & 4.232 \ (2) \\ \text{I-C3}^{\text{II}} & 4.039 \ (3) & \text{I-C24}^{\text{IV}} & 4.237 \ (2) \\ \text{Compound} \ (2) \\ \text{Fe-C11} & 2.034 \ (3) & \text{C15-C1}A & 1.502 \ (4) \\ \text{Fe-C12} & 2.036 \ (4) & \text{C1}A-\text{N1}A & 1.524 \ (4) \\ \text{Fe-C13} & 2.025 \ (4) & \text{N1}A-\text{C2}A & 1.493 \ (4) \\ \text{Fe-C14} & 2.022 \ (3) & \text{N1}A-\text{C3}A & 1.496 \ (4) \\ \text{Fe-C21} & 2.034 \ (4) & \text{C21-C22} & 1.408 \ (6) \\ \text{Fe-C22} & 2.034 \ (4) & \text{C21-C22} & 1.408 \ (6) \\ \text{Fe-C23} & 2.036 \ (4) & \text{C22-C23} & 1.384 \ (8) \\ \text{Fe-C24} & 2.027 \ (3) & \text{C23-C24} & 1.417 \ (6) \\ \text{Fe-C25} & 2.018 \ (3) & \text{C24-C25} & 1.414 \ (5) \\ \text{C11-C15} & 1.424 \ (5) & \text{C1}B-\text{N1}B & 1.526 \ (4) \\ \text{C11-C15} & 1.424 \ (5) & \text{C1}B-\text{N1}B & 1.526 \ (4) \\ \text{C11-C15} & 1.427 \ (5) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C12-C13} & 1.410 \ (7) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C13-C14} & 1.408 \ (6) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C14-C15} & 1.427 \ (5) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C12-C13} & 1.410 \ (7) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C12-C13} & 1.410 \ (7) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C12-C13} & 1.410 \ (7) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C13-C14} & 1.408 \ (6) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C12-C13} & 1.410 \ (7) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C12-C13} & 1.410 \ (7) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C12-C14} & 1.408 \ (6) & \text{N1}B-\text{C2}B & 1.482 \ (5) \\ \text{C12-C14} & 1.409 \ (4) & 12-\text{C2}B^{\text{N}} & 4.264$	Fe—C12	2.040 (2)	C1C25					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
Fe-C24								
Fe-C25								
N—C1								
N—C2								
N—C3								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			C24C23	1.433 (3)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 65	1.470 (3)						
$\begin{array}{llllllllllllllllllllllllllllllllllll$			I—C4 ⁱ					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			I—C4"					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Compound (2)		• • •	IC241V	4.237 (2)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I—C11	4.085 (2)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Compound (2)							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	•	0.004 (0)	015 014	1 500 (4)				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
Fe-C21 2.034 (4) C21-C22 1.408 (6) Fe-C22 2.034 (4) C21-C25 1.429 (4) Fe-C23 2.036 (4) C22-C23 1.384 (8) Fe-C24 2.027 (3) C23-C24 1.417 (6) Fe-C25 2.018 (3) C24-C25 1.414 (5) C11-C12 1.413 (6) C25-C1B 1.483 (4) C12-C13 1.410 (7) N1B-C2B 1.482 (5) C13-C14 1.408 (6) N1B-C2B 1.482 (5) C13-C14 1.408 (6) N1B-C3B 1.488 (5) C14-C15 1.427 (5) N1B-C4B 1.494 (5) $\frac{1}{11-C2A^v}$ 4.041 (4) $\frac{1}{12-C23^{vii}}$ 4.108 (4) $\frac{1}{11-C3A}$ 4.090 (4) $\frac{1}{12-C23^{vii}}$ 4.108 (4) $\frac{1}{11-C4A^{vi}}$ 4.082 (4) $\frac{1}{12-C24^{vii}}$ 4.038 (3) $\frac{1}{11-C4A^{vi}}$ 4.082 (4) $\frac{1}{12-C24^{vii}}$ 4.038 (3) $\frac{1}{11-C3B^{viii}}$ 3.848 (4) $\frac{1}{12-C1B}$ 4.223 (3) $\frac{1}{11-C3B^{viii}}$ 3.848 (4) $\frac{1}{12-C2B^v}$ 4.268 (6) $\frac{1}{12-C1A^v}$ 4.105 (3) $\frac{1}{12-C1B^v}$ 4.263 (6) $\frac{1}{12-C1A^v}$ 4.109 (4) $\frac{1}{12-C1B^v}$ 4.223 (3) $\frac{1}{11-C3B^{viii}}$ 3.848 (4) $\frac{1}{12-C2B^v}$ 4.268 (6) $\frac{1}{12-C1A^v}$ 4.195 (3) $\frac{1}{13-C21}$ 4.265 (4) $\frac{1}{12-C2A^v}$ 4.145 (4) $\frac{1}{13-C1B^{viii}}$ 3.995 (3) $\frac{1}{12-C2A^v}$ 4.145 (4) $\frac{1}{13-C1B^{viii}}$ 3.995 (3) $\frac{1}{12-C2A^v}$ 4.162 (4) $\frac{1}{12-C2A^v}$ 4.175 (4) $\frac{1}{13-C1B^{viii}}$ 3.995 (3) $\frac{1}{12-C2A^v}$ 4.175 (4) 4.195 (3) 4.195 (3) 4.195 (3) 4.195 (3) 4.195 (3) 4.265 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4) 4.264 (4)								
$\begin{array}{llllllllllllllllllllllllllllllllllll$			C21_C22					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
Fe-C25 2.018 (3) C24-C25 1.414 (5) C11-C12 1.413 (6) C25-C1B 1.483 (4) C11-C15 1.424 (5) C1B-N1B 1.526 (4) C12-C13 1.410 (7) N1B-C2B 1.482 (5) C13-C14 1.408 (6) N1B-C3B 1.488 (5) C14-C15 1.427 (5) N1B-C4B 1.494 (5)								
C11—C12		` '		, ,				
C11—C15								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11C15	1.424 (5)	C1 <i>B</i> —N1 <i>B</i>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15	1.427 (5)	N1 <i>B</i> —C4 <i>B</i>	1.494 (5)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1—C1A	4.005 (3)	I2—C4A*	4.264 (4)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	I2C23xi					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1—C4A	4.113 (4)	I2—C24 ^{vii}	4.038 (3)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.082 (4)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.049 (4)	I2—C1 <i>B</i>	4.223 (3)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
12—C2 A^{x} 4.145 (4) 13—C1 B^{xii} 3.995 (3) 12—C4 A 4.264 (4) Symmetry codes: (i) $-1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iii) $-x, -y, 1-z$; (iv) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (v) $x, 1-y, \frac{1}{2}+z$; (vi) $-x, 1-y, -z$;								
12—C4A 4.264 (4) Symmetry codes: (i) $-1 - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (ii) x , $\frac{1}{2} - y$, $z - \frac{1}{2}$; (iii) $-x$, $-y$, $1-z$; (iv) $-x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (v) x , $1-y$, $\frac{1}{2} + z$; (vi) $-x$, $1-y$, $-z$;								
Symmetry codes: (i) $-1 - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (ii) x , $\frac{1}{2} - y$, $z - \frac{1}{2}$; (iii) $-x$, $-y$, $1 - z$; (iv) $-x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (v) x , $1 - y$, $\frac{1}{2} + z$; (vi) $-x$, $1 - y$, $-z$;			13C1 <i>B</i>	3.993 (3)				
$-x$, $-y$, $1-z$; (iv) $-x$, $y-\frac{1}{2}$, $\frac{1}{2}-z$; (v) x , $1-y$, $\frac{1}{2}+z$; (vi) $-x$, $1-y$, $-z$;				- 1. (***)				
$-x$, $-y$, $1-z$; $(1v)$, $-x$, $y-\frac{1}{2}$, $\frac{1}{2}$, $-z$; (v) , x , $1-y$, $\frac{1}{2}$, $+z$; $(v1)$, $-x$, $1-y$, $-z$; $(v1)$, $-x$	Symmetry codes:	Symmetry codes: $(1) - 1 - x, y - \frac{1}{2}, \frac{1}{2} - z; (11) x, \frac{1}{2} - y, z - \frac{1}{2}; (11)$						

(xi) $x, 2-y, z-\frac{1}{2}$; (xii) $\frac{1}{2}-x, \frac{5}{2}-y, -z$.

the Fe- C_{cp} - C_{sp}^3 -N torsion angles of 173.3 (3) and $177.9(3)^{\circ}$ involving N(1A) and N(1B), respectively.

The Fe-C bond lengths in (2) are in the range 2.019 (3)-2.036 (4) Å [mean 2.027 (3) Å] for the C11-C15 ring and 2.018(3)-2.036(4) Å [mean 2.030(3) Å] for the C21-C25 ring. The methylene Csp^3 —N bond lengths are both 1.526 (4) Å and the Csp^3 — C_{cp} bond lengths are 1.502 (4) and 1.483 (4) Å. The mean methyl Csp^3 —N bond lengths are 1.493 (4) and 1.488 (5) Å for both trimethylammonium groups. The range and mean of C_{cp}—C_{cp} bond lengths for

both rings are 1.408 (6)-1.427 (5) Å [1.416 (6) Å] and 1.384 (8)-1.429 (4) Å [1.410 (6) Å], and these values are similar to those described previously in related structures (Ferguson, Gallagher, Glidewell & Zakaria, 1993a,c). The interplanar angle between the cyclopentadienyl planes is 1.5 (2)° and these rings are within 0.5 (2)° of being eclipsed. The conformation adopted is such that the exocyclic Csp³ atoms are rotated about a line joining the ring centroids through 72.8 (2)° from an eclipsed conformation. The Csp³ C1A and C1B atoms are displaced 0.12(1) and 0.13(1) Å from the plane of their respective C₅ rings in the same direction as the Fe atom.

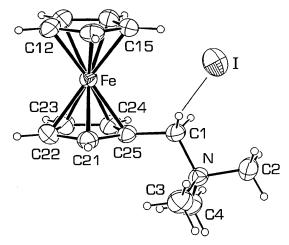


Fig. 1. A view of the asymmetric unit in the (ferrocenylmethyl)trimethylammonium iodide complex with the non-H atoms shown with thermal ellipsoids drawn at the 50% probability level. For clarity, all H atoms are drawn as small spheres of an arbitrary size.

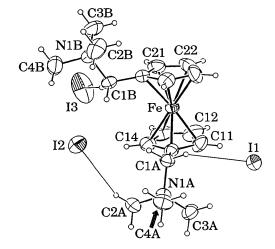


Fig. 2. A view of the asymmetric unit in the hexa-N-methylferrocene-1,1'-diylbis(methylammonium iodide) complex. All atoms are shown with thermal ellipsoids and sizes as in Fig. 1.

The inter-ion packing in both (1) and (2) is of interest. In the absence of strong hydrogen-bond (e.g. O-H and N-H) donors, there are extensive C-H···I⁻ interactions in both structures. Well documented cases of C—H···I hydrogen bonding are relatively uncommon but where it has been reported (Ferguson, Lough, McAlees & McCrindle, 1993), the C···I⁻ distance was 3.891 (8) Å. In (1), the unique iodide anion lies in a pocket formed by seven symmetry-related cations with nine $C \cdot \cdot \cdot I^-$ distances between 3.954 (2) and 4.237 (2) Å, considering all $C \cdot \cdot \cdot I^-$ contacts < 4.3 Å. A similar situation is found for the three independent iodide anions in (2). The iodide anion which resides in a general position, I1, lies in a pocket formed by six symmetry-related cations with nine C···I⁻ distances between 3.733 (4) and 4.113 (4) Å. The iodide I2, which resides on the twofold axis, is surrounded by four symmetry-related molecules with 14 (7 \times 2) C···I⁻ interactions between 4.038 (3) and 4.268 (6) Å. The iodide I3, which resides on an inversion centre, is in contact with only two symmetryrelated molecules having four (2×2) C···I⁻ contacts of 3.995 (3) and 4.265 (4) Å. The thermal parameters for I3 are markedly larger than those of I1 and I2 because it is not involved in as many C-H···I interactions as the other two iodide anions and is held loosely in the pocket in which it resides. If this extensive ion association persists to some degree in solution, it may contribute to the marked reactivity differences observed between (1) and (2).

The structure of the (ferrocenylmethyl)trimethyl-ammonium cation has been reported previously for the salts containing the counterions $\rm B_3H_8^-$ (Fu, Pan, Lu, Zhang & Zhu, 1982) and $\rm B_{10}H_{10}^{2-}$ (Zhang *et al.*, 1982); both cations have the same fully eclipsed conformation found here for (1). The closely related (ferrocenylmethyl)dimethylammonium cation has been structurally characterized both as the tetrachlorozincate (Gibbons & Trotter, 1971) and as the $\rm B_{12}H_{12}^{2-}$ salt (Zhang *et al.*, 1983), while the (ferrocenylmethyl)ethyldimethylammonium cation has been studied as its $\rm B_{20}H_{18}^{2-}$ salt (Siriwardane, Chu, Hosmane, Zhu & Zhang, 1989). In addition, the structure of *N*-(ferrocenylmethyl)pyridinium iodide has been analysed (Brown & Hall, 1977).

The structure of (1) derived earlier from X-ray powder data (Lightfoot, Glidewell & Bruce, 1992), although of much lower precision than the structure for (1) reported here, is acceptably accurate in most respects, except for the geometry about the N atom. The structure of the rigid ferrocene is well determined, apart from the more flexible side chain. The powder data gave C—CH₂ and CH₂—N distances of 1.53 (5) and 1.44 (2) Å, respectively, which are reversed from the values of 1.488 (3) and 1.521 (2) Å reported here. More

serious is the range of bond angles around the N atom which are reported here as $107.3 (2)-111.5 (2)^{\circ}$, but where the best refinement of the powder data gave the range $92 (3)-137 (3)^{\circ}$. This comparison enjoins caution in the use of powder data for the refinement of flexible structures which have considerable thermal motion, but confirms its value for more rigid fragments. H atoms were not allowed for in the powder study and the extensive $C-H \cdot \cdot \cdot I^{-}$ interactions were not detected.

GF thanks NSERC Canada for Research Grants; CMZ thanks the Committee of Vice Chancellors and Principals (UK) for support.

References

BEER, P. D., NATION, J. E., McWHINNIE, S. L. W., HARMAN, M. E., HURSTHOUSE, M. B., OGDEN, M. I. & WHITE, A. H. (1991). *J. Chem. Soc. Dalton Trans.* pp. 2485–2492.

Brown, G. M. & Hall, L. H. (1977). Acta Cryst. B33, 876-879.

ETTER, M. C. (1990). Acc. Chem. Res. 23, 120-126.

ETTER, M. C., McDonald, J. C. & Bernstein, J. (1990). *Acta Cryst.* **B46**, 256-262.

ETTER, M. C. & REUTZEL, S. M. (1991). J. Am. Chem. Soc. 113, 2586-2598.

FERGUSON, G., GALLAGHER, J. F., GLIDEWELL, C. & ZAKARIA, C. M. (1993a). Acta Cryst. C49, 967—971.

Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1993b). J. Chem. Soc. Dalton Trans. pp. 3499-3501.

Ferguson, G., Gallagher, J. F., Glidewell, C. & Zakaria, C. M. (1993c). J. Organomet. Chem. In the press.

FERGUSON, G., LOUGH, A. J., McALEES, A. J. & McCRINDLE, R. (1993).
Acta Cryst. C49, 573-577.

Fu, Z., PAN, K., Lu, J., ZHANG, G. & ZHU, H. (1982). J. Struct. Chem. (China) 1, 57-62.

GABE, E. J., LE PAGE, Y., CHARLAND, J. P., LEE, F. L. & WHITE, P. S. (1989). J. Appl. Cryst. 22, 384-387.

GIBBONS, C. S. & TROTTER, J. (1971). *J. Chem. Soc. A*, pp. 2659-2662. HOULTON, A., MILLER, J. R., SILVER, J., JASSIM, N., AXON, T. L., BLOOR, D. & CROSS, G. H. (1993). *Inorg. Chim. Acta*, **205**, 67-70.

JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

LARSON, A. C. (1970). Crystallographic Computing, p. 293. Copenhagen: Munksgaard.

Lightfoot, P., Glidewell, C. & Bruce, P. G. (1992). *J. Mater. Chem.* **2**, 361-362.

MOORE, A. J., SKABARA, P. J., BRYCE, M. R., BATSANOV, A. S., HOWARD, J. A. K. & DALEY, S. T. A. K. (1993). J. Chem. Soc. Chem. Commun. pp. 417-419.

Pauson, P. L., Sandhu, M. A. & Watts, W. E. (1966). *J. Chem. Soc. C*, pp. 251-255.

Siriwardane, U., Chu, C. S. C., Hosmane, N. S., Zhu, H. & Zhang, G. (1989). *Acta Cryst.* C45, 333-336.

SPEK, A. L. (1993a). *PLATON. Molecular Geometry Program.* Univ. of Utrecht, The Netherlands.

Spek, A. L. (1993b). *PLUTON. Molecular Graphics Program.* Univ. of Utrecht, The Netherlands.

TANG, B. Z., PETERSEN, R., FOUCHER, D. A., LOUGH, A., COOMBS, N., SODHI, R. & MANNERS, A. (1993). J. Chem. Soc. Chem. Commun. pp. 523-525.

ZHANG, Y., CAI, Z., CHEN, Z., PAN, K., LU, J., ZHANG, G. & ZHU, H. (1982). J. Struct. Chem. (China) 1, 46-53.

ZHANG, Y., CAI, Z., CHEN, Z., PAN, K., ZHANG, G. & ZHANG, Z. (1983).
J. Struct. Chem. (China) 2, 201-206.